Standard International Standard	ATE AND ACCOUNTS		No				No				
		••••••	BI <u>SE</u>	OLOGY H	SS	SC-I					
Time NOTE:			5 Minutes	omprises pages 12	. All	parts of this se	(Revised Syllabus)				
			estion paper itself. It si perintendent. Deleting				es and handed over to the ead pencil.				
Q. 1	Circle	e the co	orrect option i.e. A / B /	C / D. Each part car	ries	one mark.	· · · · · · · · · · · · · · · · · · ·				
	(i)	Whe	n macrophages are stim	ulated by bacteria, th	ey se	crete	_, which activate B cells				
		and I	helper T cell.								
		A.	Interleukins	В		Interferons					
		C.	Cytokines	D),	Pyrogens					
	(ii)		are the pieces of	of DNA that move read	dily fr	om one site to ar	nother, either within or				
		between the DNAs of bacteria, plasmids and bateriophages.									
		А.	Plasmids	B	•	Prion					
		C.	Introns	C).	Transposons					
	(iii)	Each	a day approximately	litres of fluid	pass	es from blood ca	pillaries into interstitial space.				
		Α.	10	В		20					
		C.	30	C),	40					
	(iv)	Hydrogen peroxide is a toxic molecule, which is immediately broken down to water and oxygen by									
		another enzyme called									
		Α.	Catalase	В		Diastase					
		C.	Carbohydrase	C).	Peroxidase					
	(v)	Acidi	c solutions in duodenum	cause the release of	the I	ormone					
		Α.	AcetyIcholine	В		Gastrin					
		C.	Secretin	D	ŀ.	Epinephrin					
	(vi)	The a	ability of aspirin to reduc	e fever and decrease	pain	depends on inhi	bition of synthesis.				
		А.	Steroid	В		Enzyme					
		C.	Prostaglandins	C		Hormone					
	(vii)	Com	mercially the most impo	tant mosses are		mosses.					
		Α.	Peat	В		Club					
		C.	Reindeer	D) <u>.</u>	Spanish					
	(viii)	In tR	NA molecule, the whole	molecule consists of	80 ni	icleotides, but on	ly show				
		comp	plementary base pairing.								
		Α.	10	B		20					
		C.	30	C).	40					

25

Page	1	of 2 (Bio)

DO NOT WRITE ANYTHING HERE

	In cla	ass Chondrichthyes the skin is tough and	covered	I with minute scale.
	Α.	Dermal	Β.	Placoid
	C.	Ctenoid	D.	None of these
X)		block the action of some enzyme	es by cor	mbining with iron which may be present in
	prost	thetic group or which may be required as	an enzy	me activator.
	Α.	Mercury	В.	Silver
	C.	Copper	D.	Cyanides
ki)	The	organs of locomotion in Neries are called		
	Α.	Chaetae	Β.	Radula
	C.	Parapodia	D.	Cilia
xii)	The o	chemical formula of hydrocarbon chain of	fchlorop	hyll molecule is
	А.	$C_{18}H_{37}$	Β.	$C_{19}H_{38}$
	C.	$C_{20}H_{39}$	D.	$C_{21}H_{40}$
xiii)	Sphe	enopsida include more fossil plants than l	iving one	es. Today there is only one surviving
	genu	IS		
	Α.	Equisetum	В.	Selaginella
	C.	Lycopodium	D.	Psilotum
xiv)	C.			
×iv)				
xiv)		received Nobel Prize for his cher		
(iv)	and o	received Nobel Prize for his cher chloroplast.	miosmos	sis theory of ATP production in mitochondrie
	and o	received Nobel Prize for his cher chloroplast. Peter Mitchell Melvin Calvin	miosmos B. D.	sis theory of ATP production in mitochondric Sir Hans Kreb
	and o	received Nobel Prize for his cher chloroplast. Peter Mitchell Melvin Calvin	miosmos B. D.	sis theory of ATP production in mitochondri Sir Hans Kreb Van Niel
	and o A. C.	received Nobel Prize for his cher chloroplast. Peter Mitchell Melvin Calvin has been used as an experimen	miosmos B. D. tal orgar	sis theory of ATP production in mitochondrie Sir Hans Kreb Van Niel nism in research in photosynthesis.
xv)	and c A. C. A. C.	received Nobel Prize for his cher chloroplast. Peter Mitchell Melvin Calvin has been used as an experimen Euglena	miosmos B. D. tal orgar B. D.	sis theory of ATP production in mitochondrie Sir Hans Kreb Van Niel hism in research in photosynthesis. Volvox Chlamydomonas
xiv) xv)	and o A. C. A. C. Whe	received Nobel Prize for his cher chloroplast. Peter Mitchell Melvin Calvin has been used as an experimen Euglena Chlorella	miosmos B. D. tal orgar B. D.	sis theory of ATP production in mitochondrie Sir Hans Kreb Van Niel hism in research in photosynthesis. Volvox Chlamydomonas
xv)	and o A. C. A. C. Whe	received Nobel Prize for his cher chloroplast. Peter Mitchell Melvin Calvin has been used as an experimen Euglena Chlorella n there is no host or when there are unfa	miosmos B. D. tal orgar B. D.	sis theory of ATP production in mitochondrie Sir Hans Kreb Van Niel hism in research in photosynthesis. Volvox Chlamydomonas
xv) xvi)	and o A. C. A. C. Whe form	received Nobel Prize for his cher chloroplast. Peter Mitchell Melvin Calvin has been used as an experiment Euglena Chlorella n there is no host or when there are unfa crystals e.g virus. Varicella zoster EBV	miosmos B. D. tal orgar B. D. vourable	sis theory of ATP production in mitochondrie Sir Hans Kreb Van Niel nism in research in photosynthesis. Volvox Chlamydomonas e conditions, outside the cells,virus may
xv) xvi)	and c A. C. A. C. Whe form A. C.	received Nobel Prize for his cher chloroplast. Peter Mitchell Melvin Calvin has been used as an experimen Euglena Chlorella n there is no host or when there are unfa crystals e.g virus. Varicella zoster EBV causes wilt disease of potato.	miosmos B. D. tal orgar B. D. vourable B. D.	sis theory of ATP production in mitochondrid Sir Hans Kreb Van Niel hism in research in photosynthesis. Volvox Chlamydomonas e conditions, outside the cells,virus may Influenza Tobacco Mosaic
xv)	and c A. C. A. C. Whe form A. C. A.	received Nobel Prize for his cher chloroplast. Peter Mitchell Melvin Calvin has been used as an experiment Euglena Chlorella n there is no host or when there are unfa crystals e.g virus. Varicella zoster EBV causes wilt disease of potato. Rhizobium Leguminosarum	miosmos B. D. tal orgar B. D. vourable B. D. B.	sis theory of ATP production in mitochondrid Sir Hans Kreb Van Niel hism in research in photosynthesis. Volvox Chlamydomonas e conditions, outside the cells,virus may Influenza Tobacco Mosaic Xanthomonas campestris
xv) xvi)	and c A. C. A. C. Whe form A. C.	received Nobel Prize for his cher chloroplast. Peter Mitchell Melvin Calvin has been used as an experimen Euglena Chlorella n there is no host or when there are unfa crystals e.g virus. Varicella zoster EBV causes wilt disease of potato.	miosmos B. D. tal orgar B. D. vourable B. D.	sis theory of ATP production in mitochondrid Sir Hans Kreb Van Niel hism in research in photosynthesis. Volvox Chlamydomonas e conditions, outside the cells,virus may Influenza Tobacco Mosaic
xv) xvi) xvii)	and c A. C. A. C. Whe form A. C. A. C.	received Nobel Prize for his cher chloroplast. Peter Mitchell Melvin Calvin has been used as an experiment Euglena Chlorella n there is no host or when there are unfa crystals e.g virus. Varicella zoster EBV causes wilt disease of potato. Rhizobium Leguminosarum	miosmos B. D. tal orgar B. D. vourable B. D. B.	sis theory of ATP production in mitochondrid Sir Hans Kreb Van Niel hism in research in photosynthesis. Volvox Chlamydomonas e conditions, outside the cells,virus may Influenza Tobacco Mosaic Xanthomonas campestris
xv) xvi) xvii)	and c A. C. A. C. Whe form A. C. A. C.	<pre> received Nobel Prize for his cher chloroplast. Peter Mitchell Melvin Calvin has been used as an experiment Euglena Chlorella n there is no host or when there are unfa- crystals e.g virus. Varicella zoster EBV causes wilt disease of potato. Rhizobium Leguminosarum Corynebacterium</pre>	miosmos B. D. tal orgar B. D. vourable B. D. B. D.	sis theory of ATP production in mitochondrid Sir Hans Kreb Van Niel hism in research in photosynthesis. Volvox Chlamydomonas e conditions, outside the cells,virus may Influenza Tobacco Mosaic Xanthomonas campestris

BIOLOGY HSSC-I (Revised Syllabus)

Time allowed: 2:35 Hours

Total Marks Sections B and C: 68

NOTE:	sepa	wer any fourteen parts from Section 'B' and any two questions from Section arately provided answer book. Use supplementary answer sheet i.e. Sheet–B are your answers neatly and legibly.	
		SECTION – B (Marks 42)	
Q. 2	Answ	er any FOURTEEN parts. The answer to each part should not exceed 3 to 4 lines.	(14 x 3 = 42)
	(i)	How does skin act as a barrier against entry and inhospitable environment of microbia	I growth? 03
	(ii)	What is the importance, function and chemical composition of Middle lamella?	03
	(iii)	What is Angioplasty?	03
	(iv)	Describe the structure of Microfilament.	03
	(v)	Why is the thickness of the walls of each chamber of the heart different?	03
	(vi)	Why does ice float on liquid water?	03
	(vii)	What is Dyspepsia?	03
	(viii)	Differentiate between RNA and DNA.	03
	(ix)	How do the osmotic adjustments of plants in saline soils occur?	03
	(x)	How do enzymes decrease energy of activation required by a chemical reaction?	03
	(xi)	Why are some plants carnivorous? Give examples.	03
	(xii)	Draw schematic representation of Calvin cycle.	03
	(xiii)	What are the important characteristics of Chordates?	03
	(xiv)	Describe the basic structure of HIV.	03
	(xv)	Define Polymorphism. Which animal phyla do exhibit this characteristic? Give example	
	(xvi)	Classify bacteria on the basis of presence or absence of flagella.	03
	(xvii)	What are the characteristics of Lycopsids?	03
	(xviii)	How is yeast important in baking, brewing and genetic research?	03
			03
	(xix)	Explain the development of female gametophyte in Angiosperms.	05
N - 4	-	<u>SECTION – C (Marks 26)</u>	(0 4 2 00)
Note: Q. 3		ttempt any TWO questions. All questions carry equal marks.	(2 x 13 = 26) 08
u . J	a. b.	What are the phases of cardiac cycle? What are lateral meristems? What role do they play in plant growth?	05
Q. 4	a.	What are the general characteristics of Cnidarians?	07
	b.	Explain the evolution of leaf in vascular plants.	06
Q. 5	a.	Describe the process of reproduction in bacteria.	08
	b.	What is the use of bacteriophage in creating a genomic library?	05

Roll No.									
Sig. of Candidate.									

Answer Sheet No._

Sig. of Invigilator.____

BIOLOGY HSSC-I

.....

SECTION - A (Marks 17)

Time allowed: 25 Minutes

(Old Syllabus)

NOTE: Section-A is compulsory and comprises pages 1-2. All parts of this section are to be answered on the question paper itself. It should be completed in the first 25 minutes and handed over to the Centre Superintendent. Deleting/overwriting is not allowed. Do not use lead pencil.

Q. 1 Circle the correct option i.e. A / B / C / D. Each part carries one mark.

(i)	Whic	ch of the following	is NO ⁻	F a viral disease?				
	A.	Cowpox	B .	Mumps	C.	Tetanus	D.	Smallpox
(ii)	Terti	ary structure of pr	roteins	is maintained by _	<u> </u>			
	Α.	lonic bonds			B.	Hydrogen bone	ds	
	C.	Disulfied bond	ls		D.	All of these		
(iii)	The	detachable co-fac	ctor is k	nown as a / an		if it is a	n inorg	anic ion.
	A.	Activator	Β.	Active site	C.	Co-factor	D.	Both B and C
(iv)	Pero	xisome is involve	d in for	mation and decom	npositio	n of hydrogen per	oxide ii	n the
	Α.	Animal cell	₿.	Plant cell	C.	Both A and B	D.	None of these
(v)	Five	kingdom classific	ation s	ystem was propos	ed by _		_	
	Α.	Ernst Hackel			B.	Linnaeus		
	C.	Robert Whitta	ker		D.	E. Chatton		
(vi)	The	major locomotory	structu	res in bacteria are	€			
	А.	Flagella	Β.	Fimbriae	С.	Pili	D.	Cilia
(vii)	Asco	ospores are produ	ced in .	Ascus and Basidic	ospores	s are produced in		<u></u> .
	Α.	Basidium			Β.	Basidiocarp		
	C .	Basidiomycete	es		D.	All of these		
(viii)	Whic	ch of the following	class o	of fungi do Puccini	a and I	Ustilago belong to	?	
	Α.	Zygomycota	₿.	Ascomycota	C.	Basidiomycota	D.	Deuteromycota
(ix)	The	spore of a moss o	levelop	s into an alga like	structu	ire called the		<u> </u>
	А.	Protonema	В.	Paraphysis	C.	Antheridia	D.	Archigonia

DO NOT WRITE ANYTHING HERE

•••••	••••••		• • • • • • • • • • •					
(x)	The p	prothallus of adiar	ntum pl	ant is		_		
	A.	Monoecious	B.	Dioecious	C.	Multiecious	D.	Both A and B
(xi)	Grad	e Bilateria include	e phylu	m of multicellula	r animal	<u> </u>		
	Α.	Platyhelminthe	es		B.	Nematoda		
	C.	Annelida			D.	All of these		
(xii)	Whic	h of the following	anima	ls belongs to phy	ylum Ech	inodermata?		
	Α.	Sepia	В.	Starfish	C.	Crab	D.	Leach
(xiii)	Excre	etory system of Ar	thropo	da is comprised	of			
	Α.	Flame cells			B.	Nephridia		
	C.	Malphighian tu	bules		D.	All of these		
(xiv)	Cent	ral atom of porphy	rin rin	g in chlorophyll r	nolecule	is		
	Α.	Fe atom	Β.	Mg atom	C.	Mn atom	D.	N atom
(xv)	Dige	stion in Planaria ta	akes pl	ace within	<u> </u>			
	А.	Coelom			Β.	Alimentary ca	nal	
	C .	Gastrovascula	r cavit	y	D.	Mouth		
(xvi)	The	main tracheal trun	ik in co	ockroach respirat	tory syste	em communicates	s with e	xterior by 10 pairs of
	apert	tures called						
	A .	Pores	В.	Gills	C.	Spiracles	D.	All of these
(xvii)	Lymp	oh most closely re	semble	es	<u> </u>			
	Α.	Interstitial Flui	dB.	Plasma	C.	Blood	D.	Urine
For Ex	amine	er's use only:		_		<u>.</u>		
					Tota	l Marks:		17
						s Obtained:		
				1HA 14	410 ——			

BIOLOGY HSSC-I

(Old Syllabus)

Time allowed: 2:35 Hours

Total Marks Sections B and C: 68

01

03 03

03

NOTE: Answer any fourteen parts from Section 'B' and any two questions from Section 'C' on the separately provided answer book. Use supplementary answer sheet i.e. Sheet–B if required. Write your answers neatly and legibly.

				SECTI	<u>ON – B (Marks 42)</u>					
Q. 2	Answer any FOURTEEN parts. The answer to each part should not exceed 3 to 4 lines. ($14 \times 3 = 42$									
	(i)	Define the following terms:								
		a.	Hypothesis	b.	Bioremediation	С.	Gene Therapy			
	(ii)	Write	e down the classificati	on of protei	n on the basis of stru	cture and gi	ive one example of eac	h. 03		
	(iii)	Wha	t is Optimum tempera	ture? How	can it affect the rate o	of enzyme c	atalyzed reaction?	03		
	(iv)	Desc	cribe the structure of s	porangia of	f Adiantum.			03		
	(v)	Write	e down any three ada	ptations for	parasitic mode of life			03		
	(vi)	Write	e down three sub-clas	ses of Mam	imals.			03		
	(vii)	Defir	ne Conjugated molecu	les and giv	e any two examples.			03		
	(viii)	a.	What is the chemi	cal compos	ition of Saliva?			1.5		
		b.	What is Heart bur	n or Pyrosis	?			1.5		
	(ix)	Write	e down the scientific n	ames of the	following:			03		
		a.	Corn	b.	Onion	[,] C.	Potato			
	(x)	Wha	t are taxonomic group	os of bacteri	a on the basis of pat	tern of attac	hment, presences			
		and	number of flagella?					03		
	(xi)	Write	e down the misuse of	any three a	ntibiotics.			03		
	(xii)	Write	a short note on Fora	minifera ar	nd Actinopods.			03		
	(xiii)	Ident	ify the labels A.B and	C on the f	ollowing diagram and	d write dowr	their names	03		
		c —		n an		on your a	nswer script:			
		B								
		A —								
	(xiv)	Writ∈	e down the properties	of respirato	ry surfaces.			03		
	(xv)	Defir	ne Immunity and write	its types bi	riefly.			03		
	(xvi)	a.	What is apoplast j	oathway?				01		
		b.	What is symplast	pathway?				01		

- c. What is vacuolar pathway?
- (xvii) Write down the causes and treatment of Tuberculosis.
- (xviii) Describe three functions of Lymphatic system in mammals.
 - (xix) Differentiate between Spiral and Radial cleavage.

SECTION - C (Marks 26)

Note:		Attempt any TWO questions. All questions carry equal marks.	(2 x 13 = 26)
Q. 3	a.	Describe the Mechanism of opening and closing of stomata.	06
	b.	Why is transpiration considered to be a necessary evil?	04
	c.	Define Transpiration. Also list the types of transpiration.	03
Q. 4	a.	Write a note on the methods of nutrition in animals.	09
	b.	What are the functions of Human Liver?	04
Q. 5	a.	Sketch Kreb's cycle and discuss its energy yielding steps.	08
	b.	Draw Z-Scheme to show path of electron during non-cyclic phosphorylation.	05

CO CONTRACTOR	ATE AND GREEN		I No.		Answer Sheet No Sig. of Invigilator
ANT TOTAL	WARAD PROP	, .			eig. oge.o
Time	ailow	/od: 2		.OGY HS: ON – A (Mar	
NOTE	Se	ction–A the qu	is compulsory and compression paper itself. It should	be completed in	Il parts of this section are to be answered the first 25 minutes and handed over to the ved. Do not use lead pencil.
Q. 1	Circl	e the co	orrect option i.e. A / B / C / D	. Each part carries	s one mark.
	(i)	Whe	n a tissue is injured the dama	ged cells release ch	nemical alarm signals as
		Α.	Heparin	Β.	Histamine
		C.	Pyrogen	D.	Antigen
	(ii)	In inf	termediate filaments the basic	protein subunit of t	he filament is
		Α.	Flagellin	Β.	Vimentin
		C.	Tubulin	D.	Myosin
	(iii)		is a detached intrava	scular soild, liquid c	r gaseous mass that is carried to a site distant
		from	its point of origin.		
		Α.	Thrombus	B .	Embolus
		C .	Plaque	D.	Cholesterol
	(iv)	The	steroid, wedged	into the bilayer, hel	ps stabilize the phospholipids at a body
		temp	perature but helps keep the me	embrane fluid at low	ver temperature.
		Α.	Progesterone	В.	Estrogen
		С.	Cholesterol	D.	Testosterone
	(v)	Amo	ng the five types of epithelial o	cells in stomach	cells secrete protective mucus.
		Α.	Goblet	Β.	Parietal
		C.	Zymogen	D.	Endocrine
	(vi)	Gluc	ose and Fructose are structur	al	
		Α.	Polymers	Β.	Isomers
		С.	Dimers	D.	Monomers
	(vii)		is involved in cell wal	, membrane perme	ability, enzyme activation in plants.
		Α.	Calcium	B .	Magnesium
		C.	Sulphur	D.	Potassium
	(viii)	·	protein is involved in	blood clotting mech	anism.
		Α.	Collagen	Β.	Elastin
		С.	Thrombin	D.	Myoglobin

DO NOT WRITE ANYTHING HERE

	•••••		•••••	
(ix)	The I	arval forms of echinoderm are referre	d to as	·
	Α.	Bipinnaria	В.	Trocophore
	С.	Radiolaria	D.	None of these
(x)	The	detachable co-factor is known as	, if i	t is an inorganic ion.
	Α.	Activator	В.	Cofactor
	C.	Prosthetic group	D.	Coenzyme
(xi)	Rege	eneration is exhibited by sponges, so	ne cnidarian	s, annelids and
	Α.	Arthropods	Β.	Molluscs
	C.	Nematodes	D.	Echinoderms
(xii)	The	most widespread and important carot	ene is	carotene, which is familiar as orange
	pigm	ent of carrot.		
	Α.	Alpha	В.	Beta
	C.	Eata	D.	Delta
(xiii)	Spor	es are formed in the Sporophyte by n	neiosis, thus	the spores are haploid. The spores germinate
	into a	alga like structures called	_ in bryophy	tes.
	Α.	Paraphysis	Β.	Protonema
	C.	Plasmodium	D.	Protoplasm
(xiv)	In pe	roxisomes glycolate is converted to _		during photorespiration.
	Α.	Glycine	В.	Serine
	C.	Valine	D.	Alanine
(xv)		are protozoans which posses	s shell.	
	Α.	Foraminiferans	Β.	Apicomplexans
	C.	Trypanosoma	D.	Stentor
(xvi)	Polio	can be prevented by the killed	vacc	ine.
	Α.	Sabin	В.	Salk
	C.	Alpha interferon	D.	None of these
(xvii)		introduced the term bacteriur	n, derived fro	om Greek word bacterion-a, meaning small stuff.
	Α.	Leeuwenhoek	B.	Ehrenberg
	C.	Carl Woese	D.	Pasteur
For Ex	amine	er's use only:		
			Total	Marks: 17
			Mark	s Obtained:
		—— 1HA	1410 (L)	

BIOLOGY HSSC-I (Revised Syllabus)

Time allowed: 2:35 Hours

Total Marks Sections B and C: 68

NOTE: Answer any fourteen parts from Section 'B' and any two questions from Section 'C' on the separately provided answer book. Use supplementary answer sheet i.e. Sheet-B if required. Write your answers neatly and legibly. SECTION – B (Marks 42) Q. 2 Answer any FOURTEEN parts. The answer to each part should not exceed 3 to 4 lines. $(14 \times 3 = 42)$ (i) How do interferons inhibit viral activity? 03 (ii) What is the mechanism of movement of cilia? 03 (iii) What are Stereoisomers? Explain briefly by giving example of glucose. 03 (iv)Compare the chemical composition of Nucleoplasm with that of Cytoplasm. 03 (v) What are the uses of Electrocardiogram? 03 (vi)Name a few chemicals produced in the body which act as vasodilators and vasoconstrictors. 03 (vii) How are Chylomicrons formed in digestive system and what is their fate? 03 (viii) 03 Name a few proteins which have protective function, also list their role in the body. (ix)Who proposed the starch - sugar hypothesis and how it explains stomatal opening and closing? 03 What is prosthetic group in an enzyme? Give example. (x) 03 (xi)What are the different pathways taken by plants for movement of sap? 03 (xii) What are three functions of Carotenoids? 03 (xiii) In what ways does class insecta differ from other members of animal kingdom? 03 (xiv)Why viroids are considered separately from viruses? What diseases are caused by them? $(\mathbf{X}\mathbf{V})$ Define the terms and give examples of each: 03 a. Acoelomate b. Coelomate C. Pseudocoelomate (xvi) How would you differentiate between cell walls of Gram-positive and Gram-negative bacteria? 03 03 (xvii) State the steps that lead to the evolution of seed . 03 (xviii) What are the Pathogenic roles of fungi? (xix) What is meant by circinate vernation and which group of plants exhibit it? 03 SECTION - C (Marks 26) $(2 \times 13 = 26)$ Note: Attempt any TWO questions. All questions carry equal marks. Q. 3 08 What is the conducting system of heart? а. b. How do plants adapt to cope with low and high temperatures? 05 05 Q.4 What are the general characteristics of Super class Agnatha? a. 08 b. Describe the land adaptations shown by Bryophytes. 09 Describe the steps involved in Kreb's cycle. Give schematic representation. Q. 5 a. 04 Write a note on conjugated molecules. b.